At the end of each exposure, data are read out into ACS's internal buffer memory where they are stored until they are dumped into HST's solid state data recorder. The ACS internal buffer memory holds 34 MB or the equivalent of 1 full WFC frame, or 16 HRC or SBC frames. Thus, after observing a full WFC frame, the internal buffer memory must be dumped before the next exposure can be taken. The buffer dump takes 349 seconds and may not occur while ACS is being actively commanded. Of this time, 339 seconds (for one WFC image) or 346 seconds (for 16 HRC images) is spent dumping the image. The buffer dump cannot be done during the next exposure if the latter is shorter than 339 seconds. If, however, the next exposure is less than 339 seconds the buffer dump will create an extra 5.8 minutes of overhead.
If your science program is such that a smaller FOV can be used, then one way of possibly reducing the frequency and hence overheads associated with buffer dumps is to use WFC subarrays. With subarrays, only the selected region of the detector is read out at a normal speed and stored in the buffer, and a larger number of frames can be stored before requiring a dump. Using subarrays not only reduces the amount of time spent dumping the buffer but in some cases may reduce the readout time. See Chapter 7 for a discussion of some of the limitations of subarrays. If the user elects to define a subarray of arbitrary size and location, allowed on an available-but-unsupported basis, then matching bias frames will not be automatically provided by STScI. Any bias frames specified by the user will typically be scheduled during the following occultation (i.e., they do not add to the overheads during visibility time). Dark frames and flat fields will be extracted from full frame images. In some special cases where a general subarray is cleverly defined so as to include a physical overscan region, no separate bias frames are needed.
Space Telescope Science Institute http://www.stsci.edu Voice: (410) 338-1082 help@stsci.edu |