

Application Development with the
OPUS Application Programming
Interface (OAPI).

OPUS v2.43.2

Data Processing Systems Team, Engineering & Software Services Division, Space
Telescope Science Institute, Baltimore, Maryland, USA

2

Preface...1

OPUS...1

OAPI...2

Blackboard, Entry, and Field Class Hierarchies..4

Blackboard Class Hierarchy ..4

Entry Class Hierarchy...5

Field Class Hierarchy ...6

Opus_env Class..6

Event Handling ..7

Exception Handling ...9

Opus_lock Class Hierarchy... 11

Utility Classes: Oresource & Pipeline ... 12

Utility Classes: Msg.. 12

Utility Classes: Ofile, Opus_pid, Num_in_str ... 13

Memory Management.. 14

The Clone Idiom... 14

Resource Locking .. 15

OAPI Dependencies on 3rd Party Software.. 16

Compiling & Linking Against the OAPI ... 18

A File Poller... 21

A Simple "Collector" ... 23

Non-Pipeline Application.. 29

Preface...1

OPUS...1

OAPI...2

3

Blackboard, Entry, and Field Class Hierarchies..4

Blackboard Class Hierarchy ..4

Entry Class Hierarchy...5

Field Class Hierarchy ...5

Opus_env Class..6

Event Handling ..7

Exception Handling ...9

Opus_lock Class Hierarchy... 11

Utility Classes: Oresource & Pipeline ... 11

Utility Classes: Msg.. 12

Utility Classes: Ofile, Opus_pid, Num_in_str ... 12

Memory Management.. 13

The Clone Idiom... 13

Resource Locking .. 14

Compiling & Linking Against the OAPI ... 15

A File Poller... 18

A Simple "Collector" ... 20

Non-Pipeline Application.. 26

Introduction

Preface

This document is intended to serve as a guide for OPUS users that want to develop their
own pipeline applications using the OPUS Application Programming Interface (OAPI). A
basic knowledge of OPUS pipelines and terminology are assumed. If you are new to
OPUS, it is recommended that you first read the OPUS FAQ and experiment with the
sample pipeline distributed with OPUS. Additional information is available on the OPUS
Home Page (http://www.stsci.edu/opus).

As you proceed through this guide, keep in mind that it is just that—a guide and not a
complete reference manual. A reasonable attempt is made to provide you with the high-
level design philosophy behind the OAPI to aid you in designing your own OPUS
applications. You will find brief descriptions of some its major components, and a few
examples of OPUS applications that are not too different from applications we have
developed. Most certainly, you will need to consult the OAPI HTML documentation for
specific information on using the OAPI classes when you set off to write your own code.

Changes made to this document since the last revision are highlighted appropriately.

OPUS

The OPUS platform is a distributed pipeline system that allows multiple instances of
multiple processes to run on multiple nodes over multiple paths. While OPUS was
developed to support the telemetry processing for the HST instruments, it is a generic
pipeline system, and is not tied to any particular processing environment, or to any
particular mission. From this point of view the OPUS platform does not provide the mission
specific applications themselves. Instead OPUS provides a fully distributed pipeline
processing environment structured to help organize the applications, monitor the
processing and control what is going on in the pipeline.

The basic architecture of the OPUS system is based on a blackboard model where
processes do not communicate directly with one another, but simply read and write to a
common “blackboard”. In the default implementation of OPUS, the blackboards are
accessed through the (network) file system as a directory on a commonly accessible disk.
In a cluster of workstations and larger machines, if the protections are set appropriately,
any process can "see" any file in the blackboard directory: the "posting" of blackboard
messages consists of either creating or renaming an empty file in that directory. An
alternative blackboard system built upon distributed objects using CORBA (but that still
uses the file system as a persistent store) is an option with the latest release of OPUS.

Chapter

1

2

An OPUS pipeline is defined by the set of applications that processes data or that
performs tasks in a co-operative manner and the rules that determine when they should
act and how their results should be interpreted. OPUS pipeline applications fall into two
general classes: internal pollers and external pollers. Internal pollers are developed with
explicit knowledge of the OPUS environment—they make direct calls into the OAPI library
for initialization and for event handling, and must be linked against the OAPI library.
External pollers use a proxy application (xpoll1) to communicate with OPUS and typically
are wrapped by a shell script. xpoll interacts directly with OPUS and executes the external
poller whenever work is to be performed by that process. xpoll communicates OPUS
event data and receives process completion status through the external poller’s
environment. As long as a suitable shell script can be developed that meets the input
requirements of the application, any application can be used in an OPUS pipeline. Both
internal and external pollers share many of the same basic capabilities although internal
pollers, by virtue of having direct access to the OAPI, are more flexible. The OPUS
Sample Pipeline demonstrates both classes of applications (g2f is an internal poller; all of
the other applications are external pollers).

OAPI

The OPUS Application Programming Interface (OAPI) is an object-oriented, C++ interface
to the OPUS environment distributed for Solaris2, Linux3, and Tru644 platforms. With the
OAPI, internal-polling OPUS pipeline applications can be developed that take full
advantage of the capabilities and flexibility offered by OPUS. The OAPI contains classes
for interacting with the OPUS blackboards and their contents, for reading an assortment of
resource files, for message reporting, for event handling, and for exception handling. Its
functionality can be extended to include additional or customized features not yet provided
by the library through traditional object-oriented techniques like inheritance and
composition.

The OAPI was designed to satisfy the needs of two groups of software developers. On the
one hand, it serves the programmer who wants to develop OPUS-savvy processes
without regard for the implementation details of the OPUS system. Ease of use is a
primary consideration for such a developer. On the other hand, it must be easily
maintainable, backwards compatible with previous versions of OPUS, and offer the
flexibility to meet future requirements of OPUS pipelines with little impact on existing code.
These goals demand a general, abstract approach to the architecture with strict isolation
of interface from implementation--a methodology that is often at odds with ease of use.
The library follows a middle-of-the-road tack by promoting flexibility and ease of use
through run-time polymorphism.

The OAPI exposes a set of interfaces defined by a set of core abstract base classes.
Where applicable, the base classes provide an implementation, but far more often,
specialized classes are derived from these base classes that provide the actual
functionality of OPUS. Access to these derived types is achieved through a pointer to the
base class and is transparent to the client. Using the run-time polymorphic behavior of

1 xpoll is short for eXternal POLLer and is itself an internal polling process.
2 Developed under Solaris 2.7 6 using the EGCS 1.1.2 release.
3 Developed under RedHat Linux 6.1 using the EGCS 1.1.2 release.
4 Developed under Tru64 UNIX V5.0A 1 using Compaq C++ v6.3-008 v6.2-024 (template repository included) and
Compaq C V6.1-013. and Compaq C V6.3-028

3

C++ class hierarchies in this way is a powerful tool that helps preserve a high degree of
separation between implementation and interface. Separating implementation from
interface allows the use of generic algorithms to process different implementations of an
object through a common interface thereby reducing code duplication and development
effort. In addition, it permits evolution of the OAPI with minimal impact on the clients of the
library since they only reference the interface exposed by the base classes.

OAPI Contents: An Overview

Blackboard, Entry, and Field Class Hierarchies

Most classes in the OAPI abstract some aspect of a "blackboard". A blackboard in this
context is any class that implements (at least) the interface defined by Blackboard. In
OPUS, blackboards are imagined to contain lists of unique5 entries of the same type and
the member functions to manage them. The entries on a blackboard inherit from class
Entry and are composed of a set of fields; the fields are inherited from class Field.

Blackboard Class Hierarchy

The Blackboard class hierarchy defines objects that implement message bulletin boards.
Blackboards, at their most basic, are containers of entries in this design. Member functions
exist for posting an entry on the blackboard, erasing an entry from the blackboard,
replacing one entry with another, obtaining a lock on an entry, and searching for entries
matching an entry template.

Blackboard Type Description

Blackboard The abstract base class for all OPUS blackboards. An
object of this type cannot be instantiated; it serves solely
as an interface definition for all derived classes.

Command_bb A blackboard containing commands to execute (i.e.,
functions to call).

Absolute_time_bb The blackboard used by OPUS time pollers that specify
an absolute start time (i.e., define a START_TIME
resource keyword).

Relative_time_bb The blackboard used by OPUS time pollers that specify
a periodic trigger time (i.e., define a DELTA_TIME
resource keyword).

Pstat_bb The base class for all OPUS PSTAT blackboard
implementations. It defines an interface that all PSTAT
blackboards should implement in addition to the
Blackboard interface. At present, there is only a file-

5 Entry uniqueness is determined by operator== applied for one or more of its fields.

Chapter

2

5

name based implementation (see File_pstat_bb).

File_pstat_bb An implementation of a PSTAT blackboard that stores
the PSTAT fields in a file name on the file system.

Corba_pstat_bb An implementation of a PSTAT blackboard that
interfaces with a CORBA blackboard object.

Osf_bb The base class for all OPUS OSF blackboard
implementations. It defines an interface that all OSF
blackboards should implement in addition to the
Blackboard interface. At present, there is only a file-
name based implementation (see File_osf_bb).

File_osf_bb An implementation of an OSF blackboard that stores the
OSF fields in a file name on the file system.

Corba_osf_bb An implementation of an OSF blackboard that interfaces
with a CORBA blackboard object.

Files_bb A blackboard interface to the file system, primarily used
by OPUS file pollers.

Pstat_event_bb A blackboard used to cache the application’s PSTAT for
performance purposes.

Resource_bb A blackboard interface to Oresource objects.

Ior_bb A specialized Resource_bb blackboard that acts as a
CORBA object repository.

Entry Class Hierarchy

The Entry class hierarchy defines the objects stored on the various blackboards. The
base class provides a variety of member functions that deal with the contained fields;
classes derived from Entry often augment those basic member functions.

The mapping of blackboard type to entry type is as follows:

Blackboard Type Entry Type Used on that Blackboard

Command_bb Command

Absolute_time_bb

Relative_time_bb

Time_entry

File_pstat_bb‡ File_pstat‡

6

File_osf_bb‡ File_osf‡

Corba_pstat_bb‡ Corba_pstat‡

Corba_osf_bb‡ Corba_osf‡

Files_bb File_entry

Resource_bb

Ior_bb

Resource_entry

‡ These types normally are referenced indirectly through a pointer to the base type (see
Figure 1).

Field Class Hierarchy

The Field class hierarchy defines the fields that make up the various Entry objects.

The mapping of entry type to contained field type is as follows:

Entry Type Fields Contained by that Entry

Command Com_label, Com_arg

Time_entry Delta_time or Absolute_time

Pstat Pid, Process, Proc_stat, Start_time,
Path, Node, Proc_cmd

Osf Time_stamp, Obs_stat, Dataset, Data_id,
Dcf_num, Obs_cmd

File_entry Directory, Rootname, Extension, Dangle

Resource_entry Resource_key, Resource_value

Opus_env Class

Class Opus_env establishes the OPUS environment for an application. The constructor
performs command line argument parsing and creation of the appropriate blackboards. A
typical internal polling process that uses the OAPI instantiates one of these objects
immediately after entering main. Opus_env also acts as a convenient interface to
commonly called OPUS facilities once the process is up and running in the pipeline. For
example, the get_res_itemmember function returns a keyword value from the process
resource file after performing path file value substitution as necessary.

7

An important item to keep in mind is that only one instance of Opus_env can be
instantiated per process. To access any of its member functions, a reference or pointer to
the object must be in scope or an appropriate singleton defined. The callback functions for
OPUS events automatically receive a reference to Opus_env to aid in gaining access to
the object.

After constructing the Opus_env object and performing any other one-time initialization
tasks, a pipeline application typically enters a polling loop in which the poll member
function is repeatedly called followed by processing of the returned event. A simple code
fragment that demonstrates initialization and the polling loop follows:

Opus_env opus(argc, argv); // Initialize OPUS
if (!opus.is_initialized()) { // Construction failed- exit.

cerr << "Bailing out." << endl;
exit(EXIT_FAILURE);

}

Halt_event::add_callback(halt_handler); // register callback for
// HALT events

while(true) {
Event* e = opus.poll(); // poll for an event
try {

e->process(); // process event (callback is called)
}
catch(...) {

cerr << "A problem was encountered processing: " <<
e->trigger_name() << endl;
exit(EXIT_FAILURE);

}
delete e; // dispose of the event

}

In this example, a callback function to handle HALT events is registered (the code for the
function halt_handler is not shown), and then the polling loop is entered. Should the
call to Opus_env::poll() return a HALT event, the halt_handler function is called
by the process member function of the Event object. The next section describes the
types of events the library can generate and to which an application can respond.

Applications like osf_create that are not run in the pipeline, but that require access to
the OPUS blackboards, also can use Opus_env with a special form of the constructor.
The last case study in Chapter 4 provides an example of such an application and
illustrates this specialized use.

Event Handling

Once polling of the blackboards is initiated via a call to Opus_env::poll, the application
enters an event-driven mode where callbacks are used to handle events as they occur.
The events may be user-defined (through OSF, file, and time triggers defined in the
process resource file) or they may result from external signals sent to the process (a HALT
or REINIT command issued by the PMG, for example). In addition, the Opus_env object
handles some events internally without ever calling application code (examples include
SUSPEND commands issued by the PMG and MINBLOCKS disk space checks).

8

Application code must register callback functions for each event type it wishes to handle
(the default action for an event with no callback is to ignore it). The following event types
are defined (note that some of the events are handled by Opus_env and callbacks should
not be registered for them when using Opus_env):

Event Type Event Trigger Means of Handling Event

File_event One or more matches to the file
mask(s) specified in a process
resource file.

Register callback.

Time_event The process resource file specified
absolute time or elapsed time has
expired.

Register callback.

Osf_event One or more matches to the OSF
mask(s) specified in the process
resource files.

Register callback.

Command_event A function associated with a Command
on the Command_bb returned true
when called during a search of the
blackboard.

Register callback.

Halt_event A HALT command issued on the
application's PSTAT.

Register callback.

Reinit_event A REINITIALIZE command issued on
the application's PSTAT.

Register callback.

Low_store_event A check for MINBLOCKS indicates
not enough free space on disk.

Handled internally by
Opus_env; creation of the
event causes an exception
of type Internal_event
to be thrown that is caught
by Opus_env::poll.

Suspend_event A SUSPEND command issued on the
application's PSTAT.

Handled internally by
Opus_env; creation of the
event causes an exception
of type Internal_event
to be thrown that is caught
by Opus_env::poll.

Suspended_event Application's PSTAT indicates that it
is suspended.

Handled internally by
Opus_env; creation of the
event causes an exception
of type Internal_event
to be thrown that is caught
by Opus_env::poll.

9

Resume_event A RESUME command issued on the
application's PSTAT.

Handled internally by
Opus_env; creation of the
event causes an exception
of type Internal_event
to be thrown that is caught
by Opus_env::poll.

To register a callback function for an event, use the static member function
add_callback for that event type. Only one callback can be registered per event type.
The callback function must have the signature void func(const string&,
Event*, const Opus_env&). The first argument is a reference to a string containing
the trigger name, the second argument is a pointer to the actual event object, and the third
argument is a reference to the Opus_env object.

The callback function is called indirectly by the process member function of the event in
question (usually called in the application's polling loop). The body of the callback function
has access to both the event member functions and those of Opus_env, and should
perform any processing required in order to handle the event. Once processing is
complete, the event should be closed by a call to Opus_env::close_event after
obtaining locks on any entries in the event that will be updated. This member function
applies any process resource file defined modifiers to the entries that triggered the event
on the blackboard (for example, an OSF stage might be changed from p to c to signal
successful completion).

Exception Handling

The OAPI takes advantage of C++ exception handling by "passing the buck" when a
situation arises during execution of the library code that is best handled by the calling
routine. The C++ exception-handling mechanism is of great benefit to the library developer
because it is rare that the library code knows exactly what should be done when a run-
time error occurs. Moreover, error codes returned by a library are too easily ignored and
lead to further library corruption as they go undetected and additional library calls are
made with corrupted data or bad state information. On the contrary, exceptions force the
caller to take action lest the program abort.

Every exception thrown by the OAPI is derived from class Opus_exceptions. Thus, all
OAPI exceptions can be caught as a reference to this type of object. Each class in this
hierarchy is associated with a loosely defined category of exceptional conditions, and is a
class template instantiated for the type of object responsible for the exception being
thrown. The table below lists the class templates derived from Opus_exceptions.

Class Template Exceptional Condition

Bad_val A bad or inappropriate object was encountered during
processing.

10

processing.

No_entry An item expected to exist in a group of items is missing.

Type The wrong type of object was used in an operation.

Io_error An error occurred during an I/O operation.

Ambiguous An operation resulted in an ambiguous situation that
cannot be resolved by the library.

Severe An unexpected error has prevented completion of the
operation.

Already An operation was requested that already is complete.

Not_ready A required input for completing the requested operation
is not ready or available.

Exec Execution of a sub-process or shell failed.

File_action Application of a field modifier to a File_entry object
has signaled the need for a FILE_ACTION to be
performed (only used by Opus_env).

Corrupt Information required to complete processing appears to
be corrupt.

Locked The requested resource is locked by another entity and
cannot be reserved.

In general, the object thrown is constructed with the type that caused the exception, or
with information useful to the exception handler. For example, if an integer argument
passed into a function were out of range, that function might throw an exception of type
Bad_val<int> where the template argument is the bad integer value. The code
producing the exception might look like:

if (i < 0) {
string desc("Integer out of range!");
throw Bad_val<int>(i, desc);

}

As seen in the example above, Opus_exceptions types also can take a string
description of the object (or some other useful information) accessible to the handler
through the str member function. What happens in the throw statement is the constructor
for Bad_val<int> is called with i and desc as arguments. The constructor for
Opus_exceptions places a copy of the first argument in the public class member arg
(in this case it would be of type int) where it is accessible to the exception handler, and
stores the second argument to be used as a return value to the str member function.
When no obvious type avails itself as the target of an exception, the template type void*
with a value of 0 is commonly used.

11

Catching exceptions thrown by the library can be done in many ways depending on the
desired result. However, be aware that uncaught exceptions will terminate the application.
If the actual object that caused the exception is not important where it will be caught, no
object to the catch statement need be specified:

try {
something();

}
catch(Bad_val<string>) {

cerr << "A bad value exception occurred." << endl;
}

If access to the exception object is desired, it should be caught as a reference:

try {
something();

}
catch(Bad_val<string>& e) {

cerr << "A bad value exception occurred." << endl;
cerr << "Exception type: " << e.which() << endl;
cerr << "Object causing exception: " << e.arg << endl;
cerr << "Object description: " << e.str() << endl;

}

All Opus_exceptions types can be caught by a single catch clause of the form:

try {
something();

}
catch(Opus_exceptions& e) {

cerr << "Exception type: " << e.which() << endl;
cerr << "Object description: " << e.str() << endl;

}

Opus_lock Class Hierarchy

The OAPI supports shared resource locking to ensure the integrity of items that might be
subject to simultaneous change-access by more than one process. Common examples
are OSF's and PSTAT's, but also include input/output files accessible by more than one
process through the files blackboard. For example, it is important that a process intending
to change an OSF be assured that no other processes will modify that OSF during the
time it takes to perform its own change. The OAPI provides a means of obtaining an
advisory lock6 on a blackboard entry using the lock member function. It is up to the
application developer, however, to obtain a lock on an entry before modifying it on
the blackboard, and to release the lock once it is no longer needed. All pipeline
applications must follow this protocol in order for locking to function well.

The base class Opus_lock defines a generic interface for all resource locking in the
OAPI. There are several types derived from Opus_lock:

6 Advisory locks require cooperation among all processes that might access a shared resource. In particular, a
process must not alter a shared resource without first obtaining a lock. This is in contrast to mandatory locks that
enforce locking at the access level and cannot be circumvented.

12

• Opus_lock_file for locking files.

• Null_lock for cases where an Opus_lock object is needed, but no locking of the
target object is required or meaningful (e.g., the lock_entry member functions on
the time blackboards return locks of this type).

� Osf_lock and Pstat_lock are base classes for all OSF and PSTAT locks,
respectively. They add a member function for retrieving the state of the OSF and
PSTAT on the blackboard after the lock is acquired (the lock itself is a masked version
of the actual PSTAT or OSF, so the lock does not contain this information).

• File_status_lock, a base template class derived from Opus_lock_file, for
file-based entry locks (File_osf and File_pstat).

• File_osf_lock and File_pstat_lock are typedefs of template instantiations of
File_status_lock with File_osf and File_pstat as template parameters,
respectively. file-based locks that inherit from Opus_lock_file and Osf_lock and
Pstat_lock, respectively.

• Corba_entry_lock, a base template class, for CORBA-based entry locks
(Corba_osf and Corba_pstat).

• Corba_osf_lock and Corba_pstat_lock are typedefs of template instantiations
of Corba_entry_lock with enumerated types BB_Helper::OSF and
BB_Helper::PSTAT as template parameters, respectively.

Utility Classes: Oresource & Pipeline

The Oresource class serves as an interface to resource files. Resource files, in general,
contain keyword/value pairs and possibly, comment lines. Examples include process
resource files, path files, pipeline stage files, etc. Keywords may contain a class-like
structure, and once the file is read into memory, additional keywords may be added to the
in-memory copy.

The Pipeline class is a specialized version of Oresource (although it is not inherited
from it) that is designed to parse pipeline stage files. This class makes it easier to extract
pipeline definitions from these files.

Utility Classes: Msg

The Msg class offers an ostream-like interface to message reporting. Any number of Msg
objects can be instantiated in an application; however, the data associated with these
objects are static. That is, changes to one Msg object apply to all other Msg objects, and
those changes remain in force even after the object goes out of scope (and is destroyed).

13

Utility Classes: Ofile, Opus_pid, Num_in_str

Several utility classes are part of the OAPI library. A brief summary of each appears in the
following table:

Class Purpose

Ofile Can resolve VMS-like directory stretches in a file
specification.

Opus_pid Interface to the OPUS process ID that includes the host
name and the system assigned parent process ID.

Str_to_num Aids in conversion of string-embedded numbers to their
native types.

Num_in_str Aids encapsulation of numeric types in string objects.

Application Development

This chapter covers the basics of building an application that uses the OAPI and important
points to consider when developing your code. Chapter 4 examines three OAPI case
studies in detail using the source code as a guide.

Memory Management

The OAPI creates and manipulates objects allocated off of the heap using operator
new in most cases. Moreover, some member functions like Entry::set_field that act
on their calling argument actually create a copy of the object passed to them (see The
Clone Idiom in the next section) requiring that the caller dispose of the original version
after the call. In general, it is the client’s responsibility to free memory allocated for objects
passed in this way to the OAPI and for those objects created in the OAPI and returned to
the caller. Failing to do so will result in memory leaks. In particular, client code must guard
against exceptions being thrown by the OAPI that might bypass delete operations on
dynamically allocated objects.

The Clone Idiom

As mentioned in the previous chapters, the OAPI insulates clients from much of the library
implementation through run-time polymorphism. The implication of this in C++ is the need
to manipulate polymorphic objects through a pointer to the base type. Without resorting to
run-time type identification, it is not possible in general to identify the actual object type
referenced by the pointer. A commonly encountered situation both in OAPI and client code
is one where a copy or duplicate of a polymorphic object is needed when only a pointer to
the base type is held. To aid copying these objects, the clone virtual member function is
included in many class interfaces. This member function creates an exact copy of the
underlying object (off the heap; see Memory Management above) without the caller
having to know the explicit object type referenced.

Unfortunately, not every C++ compiler supports covariant return types, so the clone
member function always returns the new object as a pointer to the base type in the OAPI.
A dynamic cast must be used on the newly constructed object, if necessary, to access
member functions specific to that type’s interface. For example, the OSF field type
Obs_stat has the non-const member function set_position for changing the status
character in the field for a particular processing stage. Given a const object, a clone must
be made before calling a non-constmember function:

const Obs_stat* ostat;
.

Chapter

3

15

.

.
Field* copy = ostat->clone();
Obs_stat* ostat_copy = dynamic_cast<Obs_stat*>(copy);
ostat_copy->set_position(1, ‘c’);
.
.
.
delete ostat_copy;

Since the clone member function returns Field*, the new object must be downcast to
the actual type before set_position is used as illustrated above.

Resource Locking

The OAPI supports shared resource locking to ensure the integrity of items that might be
subject to simultaneous change-access by more than one process. Common examples
are OSF's and PSTAT's, but also include input/output files accessible by more than one
process through the files blackboard. For example, it is important that a process intending
to change an OSF be assured that no other processes will modify that OSF during the
time it takes to perform its own change. The OAPI provides a means of obtaining an
advisory lock7 on a blackboard entry using the lock member function. It is up to the
application developer, however, to obtain a lock on an entry before modifying it on the
blackboard, and to release the lock once it is no longer needed. All pipeline applications
must follow this protocol in order for locking to function well. Locks are released by calling
the release member function on a lock object or by deleting a dynamically allocated
object.

The case studies in Chapter 4 illustrate use of this locking mechanism. Consider the
following code fragment from the OSF event handling routine of Case #1:

// close event: lock event entries & call
// Opus_env::close_event
vector<Opus_lock*> locks;
evt->lock_list(locks);
// handle failed locks in a simplistic way
if (locks[0] == 0) {

m << sev(Msg::W) << type(Msg::LOCK) <<
"Failed to obtain lock on file - trying again..."
<< endm;

sleep(5);
evt->lock_list(locks);
if (locks[0] == 0) {

locks.clear();
m << sev(Msg::E) << type(Msg::LOCK) <<
"Failed to obtain lock again. No update " <<
"will be performed." << endm;

}

// if no lock was obtained, ignore event
if (!locks.size()) opus_close_event(Opus_env::IGNORE_EVENT, evt);
else if (status) opus.close_event("FILE_SUCCESS", evt);
else opus.close_event("FILE_ERROR", evt);

if (locks.size()) delete locks[0]; // release lock

7 Advisory locks require cooperation among all processes that might access a shared resource. In particular, a
process must not alter a shared resource without first obtaining a lock. This is in contrast to mandatory locks that
enforce locking at the access level and cannot be circumvented.

16

An attempt is made to lock each OSF entry in the event object using the lock_list
member function prior to calling Opus_env::close_event. This is required because
close_event will modify each of the event entries on the blackboard according to the
supplied processing status8 under the assumption that the caller already has locked each
entry. Note that the client code must decide what to do in the situation where one or more
locks could not be acquired. In the example above, a single retry attempt is made prior to
giving up in this case. The locking mechanism itself makes several attempts to obtain a
lock on an entry, so this example might be overkill. Nevertheless, it demonstrates that
the advisory lock protocol used by the OAPI places responsibility for maintaining
the integrity of shared resources squarely on the client.

When an event occurs on a blackboard, a copy of the entries that triggered the event are
placed in the event object. These entries are not locked on the blackboard at this point, so
it is possible for these copies to diverge from their true blackboard states. (For example, if
another process modified one or more of the entries after the copies were obtained.) If this
happens and an attempt is made to update the entries listed in the event using
Opus_env::close_event, an exception will be thrown. By locking the event entries
using lock_list as demonstrated above, this issue is resolved automatically for OSF
events—the locking mechanism refreshes each of the event entries with the blackboard
state of the OSF after the lock is acquired. The same is not true for file events because
parallel processing of files is not performed in general.

Thread Safety

The OAPI is thread-safe in the sense that access to static data is synchronized and OAPI
objects can be used in multi-threaded programs. The class Msg, in particular, maintains
thread-specific data that gives each thread its own message buffer. Once a message is
terminated with the endm manipulator, it is sent to the appropriate output stream as a
whole (to avoid interleaving of messages between threads). Note, however, that in general
C++ output stream implementations are not thread-safe, so some message interleaving
between threads still might occur.

OAPI Dependencies on 3rd Party Software

The Solaris and Linux versions of the OAPI are built with the GNU/EGCS compiler and the
SGI Standard Template Library in place of the supplied Standard C++ library libstdc++
(the latter is not thread-safe). The SGI STL is implemented entirely as templates within
include files, so one need only change the preprocessor include file search path to pick up
the SGI STL headers instead of those in the EGCS distribution. The SGI STL include files
and more information on this software can be found at http://www.sgi.com/tech/stl.

The OAPI uses the ACE/TAO Real-time CORBA ORB as its distributed object
middleware. In order to compile and link against the OAPI, ACE/TAO must be installed
and configured appropriately. Version 3.2 of the OAPI was built against ACE 5.1.16, which
can be obtained at http://www.cs.wustl.edu/~schmidt/TAO.html. Refer to the notes below
when following the ACE/TAO build procedure:

8 Except when Opus_env::IGNORE_EVENT is used; see the documentation for Opus_env::close_event.

17

Tru64 Unix

� Create the file $ACE_ROOT/ace/config.h containing:

#undef ACE_LACKS_IOSTREAM_TOTALLY
#define ACE_HAS_STANDARD_CPP_LIBRARY 1
#define ACE_USES_STD_NAMESPACE_FOR_STDCPP_LIB 1
#undef ACE_USES_OLD_IOSTREAMS
#include "ace/config-tru64.h"

� Copy the file
$ACE_ROOT/include/makeinclude/platform_tru64_cxx.GNU to
$ACE_ROOT/include/makeinclude/platform_macros.GNU, then add

CFLAGS += -D__USE_STD_IOSTREAM

to the top of this file and change the line

SOFLAGS = -shared –use_ld_input $(ACELIB)

to

SOFLAGS = -nocxxstd –Wl,-expect_unresolved,* -shared -
use_ld_input $(ACELIB)

Solaris

� Copy the file $ACE_ROOT/ace/config-sunos5.6.h to
$ACE_ROOT/ace/config.h.

� Copy the file
$ACE_ROOT/include/makeinclude/platform_sunos5_g++.GNU to
$ACE_ROOT/include/makeinclude/platform_macros.GNU, then add

exceptions = 1
threads = 1

to the top of the file and change the lines

CFLAGS += -W -Wall -Wpointer-arith -pipe
CCFLAGS+= $(CFLAGS) -fno-implicit-templates

to

CFLAGS += -pthreads -W -Wall -Wpointer-arith -pipe
CCFLAGS += $(CFLAGS)

18

� Set PATH to use the version of gperf in the ACE/TAO distribution.

Linux

� Copy the file $ACE_ROOT/ace/config-linux.h to
$ACE_ROOT/ace/config.h.

� Copy the file $ACE_ROOT/include/makeinclude/platform_linux.GNU to
$ACE_ROOT/include/makeinclude/platform_macros.GNU, then add

exceptions = 1
threads = 1

to the top of the file and change the line

CCFLAGS+= $(CFLAGS) $(IMPLICIT_TEMPLATES_FLAG)

to

CCFLAGS += $(CFLAGS)

Compiling & Linking Against the OAPI

The OAPI has been built and tested using the following platforms and compilers:

• Compaq Tru64 UNIX v5.10A, Compaq C++ V6.3-008V6.2-024, Compaq C V6.3-
028V6.1-013

o Compiler flags: -g –pthread –DSTDB_UNIX –DITS_AXP_UNIX –
DITS_UNIX –D__USE_STD_IOSTREAM –DDIGITAL_UNIX=0x500 –
DACE_HAS_EXCEPTIONS –ptr [template_repository_path]

• Sun Solaris 2.67, EGCS Release 1.1.2

o Compiler flags: –g –fPIC –pthreads –Wno-sign-compare –
ftemplate-depth-25 –DSTDB_UNIX –DITS_SPARC_SOLARIS –
DITS_UNIX –DUSE_STRSTREAM –DACE_HAS_EXCEPTIONS

• RedHat Linux 6.1, EGCS Release 1.1.2

o Compiler flags: –g –fPIC –pthread –Wall –Wno-sign-compare
–ftemplate-depth-25 –DITS_UNIX –DITS_LINUX –DMSDOS –
DUSE_STRSTREAM –DACE_HAS_AIO_CALLS –
DACE_HAS_EXCEPTIONS –D_POSIX_THREADS –
D_POSIX_THREAD_SAFE_FUNCTIONS –D_REENTRANT –
erroff=E_END_OF_LOOP_NOT_REACHED –
erroff=E_STATEMENT_NOT_REACHED

19

In addition to the command-line arguments listed above, OPUS must be compiled against
the appropriate version of ACE/TAO on all platforms (header files and libraries) and the
SGI STL (headers only) under Solaris and Linux. See the previous section for more details
on these 3rd party software dependencies. Earlier versions of these operating systems and
compilers may (or may not) work with the OAPI. The template repository path for Tru64 is
the obj/axp_unix/cxx_repositorylocated in the obj/axp_unix sub-directory of
the OPUS release in a tar file (you must extract the repository elements from the tar file
before compiling under Tru64). Header OAPI header files are located under the inc sub-
directory of the OPUS release and the OAPI library is located in the appropriate platform
sub-directory of lib (axp_unix = Tru64; sparc_solaris = Solaris; linux = Linux).

Sample commands for each platform are given below for building the following OAPI
code:

#include “msg.h”
#include “opus_env.h”
#include “event.h”
#include “halt_event.h”
#include “opus_exceptions.h”

using namespace std;

void halt_event_process(const string& title, Event* evt, const Opus_env& opus);

int main(int argc, char* argv[])
{

Msg m;
m.set_rpt_level(Msg::ALL);

Opus_env opus(argc, argv);
if (!opus.is_initialized()) {

m << sev(Msg::F) << type(Msg::SEVERE) <<
"OPUS failed to initialize." << endm;

exit(EXIT_FAILURE);
}

Halt_event::add_callback(halt_event_process);

try {
while (true) {

Event* e = opus.poll();
e->process(opus);
delete e;

}
}
catch(Opus_exceptions& oe) {

m << sev(Msg::F) << type(Msg::SEVERE) << oe.which() << endl;
m << oe.str() << endm;
return (EXIT_FAILURE);

}
catch(...) {

m << sev(Msg::F) << type(Msg::SEVERE) <<
"A non-OAPI exception occurred." << endm;

return(EXIT_FAILURE);
}

}

// Halt_event callback function
void halt_event_process(

const string& title,
Event* evt,
const Opus_env& opus)

{
Msg m;
m << "HALT command issued. Terminating." << endm;
exit(EXIT_SUCCESS);

20

}

Assuming that OPUS v3.22.1A was installed in /usr/local and the above code was in
a file named sample.cpp in the current working directory, the following commands could
be used to create an executable named sample in the current working directory:

• Tru64

cxx -o sample -D__USE_STD_IOSTREAM -pthread -DSTDB_UNIX -DITS_UNIX -D
ITS_AXP_UNIX -DDIGITAL_UNIX=0x500 -DACE_HAS_EXCEPTIONS -ptr
/usr/local/opus/obj/axp_unix/cxx_repository/ -I$ACE_ROOT/ace -
I/usr/local/opus/inc/ -L/usr/local/opus/lib/axp_unix
-L$ACE_ROOT/ace sample.cpp -loapi -lstr -lsys -lTAO_CosNaming -
lTAO_CosEvent -lTAO_PortableServer -lACE -lTAO

cxx -o sample –D__USE_STD_IOSTREAM –I/usr/local/opus/inc/ -
L/usr/local/opus/lib/axp_unix/ -ptr
/usr/local/opus/obj/axp_unix/cxx_repository/ sample.cpp -loapi

• Solaris

c++ -o sample -fPIC -pthreads -Wno-sign-compare -ftemplate-depth-25 -D
STDB_UNIX -DITS_UNIX -DITS_SPARC_SOLARIS -DACE_HAS_EXCEPTIONS -
DUSE_STRSTREAM -I/usr/local/opus/inc -I$ACE_ROOT/ace -
I/usr/local/sgi_stl -L/usr/local/opus/lib/sparc_solaris -L$ACE_ROOT/ace
sample.cpp -loapi -lstr -lsys -lTAO_CosNaming -lTAO_CosEvent -
lTAO_PortableServer -lACE -lTAO

c++ -o sample –I/usr/local/opus/inc/ -
L/usr/local/opus/lib/sparc_solaris/ sample.cpp -loapi

• Linux

c++ -o sample -fPIC –pthread -Wall -Wno-sign-compare -ftemplate-depth-
25 –DMSDOS -DITS_UNIX -DITS_LINUX –DACE_HAS_AIO_CALLS -
DACE_HAS_EXCEPTIONS -DUSE_STRSTREAM –D_POSIX_THREADS –
D_POSIX_THREAD_SAFE_FUNCTIONS –D_REENTRANT –
erroff=E_STATEMENT_NOT_REACHED –erroff=E_END_OF_LOOP_NOT_REACHED -
I/usr/local/opus/inc -I$ACE_ROOT/ace -I/usr/local/sgi_stl -
L/usr/local/opus/lib/linux -L$ACE_ROOT/ace sample.cpp -loapi -lstr -
lsys -lTAO_CosNaming -lTAO_CosEvent -lTAO_PortableServer -lACE -lTAO

c++ -o sample –I/usr/local/opus/inc/ -L/usr/local/opus/lib/linux/
sample.cpp -loapi

Before running any application built against the OAPI, the environment variable
LD_LIBRARY_PATH must be changed to include the path to liboapi.so and the
ACE/TAO libraries in $ACE_ROOT/ace (the OPUS installation and upgrade scripts
configure LD_LIBRARY_PATH for you).

Trigger definitions include polling for a single file.

Initialize OPUS.

Case Studies

A File Poller

The following example demonstrates a simple file polling application. A single file is polled
for with the mask *.pod, then a set of operations are performed. Finally, the file is
updated according to the status of the operations performed.

The process resource file and portions of the source code are presented below (a suitable
path and pipeline stage file are not shown).

case1.resource:

PROCESS_NAME = case01
TASK = <oapi_sample_case1 -p $PATH_FILE -r case01>
DESCRIPTION = 'A Simple File Poller'
SYSTEM = 'OAPI Case Studies'
DISPLAY_ORDER = 1

FILE_RANK = 1
FILE_DIRECTORY1 = inp_dir
FILE_OBJECT1 = *.pod

FILE_PROCESSING = _proc ! set dangle to _proc

! new feature allows status to update arbitrary field (see Ch. 5)
FILE_SUCCESS.DIRECTORY = /done/ ! copy file to /done on success
FILE_SUCCESS.DANGLE = _done ! and change dangle to _done
FILE_ERROR.DIRECTORY = /trouble/ ! copy file to /trouble

case1.cpp:

#include <iostream>
#include "opus_env.h"
#include "opus_lock.h"
#include "event.h"
#include "halt_event.h"
#include "file_event.h"
#include "msg.h"
#include "opus_exceptions.h"

using namespace std;

// event handler prototypes
void halt_event_process(const string&, Event*, const Opus_env&);
void file_event_process(const string&, Event*, const Opus_env&);

int main(int argc, char* argv[])
{

Msg m;
m.set_rpt_level(Msg::ALL);

Opus_env opus(argc, argv);
if (!opus.is_initialized()) {

Chapter

4

22

Register callbacks.

Polling loop.

Locks must be obtained for the entries
in the event before attempting to close
the event.

m << sev(Msg::F) << type(Msg::SEVERE) <<
"OPUS failed to initialize." << endm;

exit(EXIT_FAILURE);
}

Halt_event::add_callback(halt_event_process);
File_event::add_callback(file_event_process);

try {
while (true) {

Event* e = opus.poll();
e->process(opus);
delete e;

}
}
catch(Opus_exceptions& oe) {

m << sev(Msg::F) << type(Msg::SEVERE) << oe.which() << endl;
m << oe.str() << endm;
return (EXIT_FAILURE);

}
catch(...) {

m << sev(Msg::F) << type(Msg::SEVERE) <<
"A non-OAPI exception occurred." << endm;

return(EXIT_FAILURE);
}

}

// File_event callback function
void file_event_process(

const string& title, /* Trigger name */
Event* evt, /* Pointer to the file event */
const Opus_env& opus) /* Reference to Opus_env */

{
Msg m;

Event::iterator vi = evt->begin();
m << sev(Msg::D) << "Processing file: " <<
(*vi)->str() << endm;

// PROCESSING OF THE EVENT WOULD GO HERE
int status = do_something();

// close event: lock event entries & call
// Opus_env::close_event
vector<Opus_lock*> locks;
evt->lock_list(locks);
// handle failed locks in a simplistic way
if (locks[0] == 0) {

m << sev(Msg::W) << type(Msg::LOCK) <<
"Failed to obtain lock on file - trying again..."
<< endm;

sleep(5);
evt->lock_list(locks);
if (locks[0] == 0) {

locks.clear();
m << sev(Msg::E) << type(Msg::LOCK) <<
"Failed to obtain lock again. No update " <<
"will be performed." << endm;

}

// if no lock was obtained, ignore event
if (!locks.size()) opus_close_event(Opus_env::IGNORE_EVENT, evt);
else if (status) opus.close_event("FILE_SUCCESS", evt);
else opus.close_event("FILE_ERROR", evt);

if (locks.size()) delete locks[0]; // release lock
}

// Halt_event callback function
void halt_event_process(

23

Trigger definitions include polling for up to 10 OSF's
of class 'mem' with 'v' in the stage CO

Initialize OPUS.

const string& title,
Event* evt,
const Opus_env& opus)

{
Msg m;
m << "HALT command issued. Terminating." << endm;
exit(EXIT_SUCCESS);

}

A Simple "Collector"

The following advanced example is a partial implementation of an application that polls for
up to 10 OSF's with class "mem" that are waiting in the same “collection” stage. It then
queries the database to determine whether any "associations" are complete. If all the
members are present for an association, the association OSF (class "asn", assumed
already to have been created) and its member OSF's are updated to show completion for
the collection stage.

case2.resource:

PROCESS_NAME = case02
TASK = <oapi_sample_case2 -p $PATH_FILE -r case02>
DESCRIPTION = 'A Simple Collector'
SYSTEM = 'OAPI Case Studies'
DISPLAY_ORDER = 1

OSF_RANK = 1
OSF_TRIGGER1.MAXTARGS = 10
OSF_TRIGGER1.CO = v
OSF_TRIGGER1.DATA_ID = mem

OSF_PROCESSING.CO = v ! don't disturb OSF's after triggering

UPDATE_OSF.CO = c ! status used to update OSF's

case2_main.cpp:

#include <iostream>
#include "opus_env.h"
#include "opus_lock.h"
#include "event.h"
#include "halt_event.h"
#include "osf_event.h"
#include "msg.h"
#include "opus_exceptions.h"

using namespace std;

// event handler prototypes
void halt_event_process(const string&, Event*, const Opus_env&);
void osf_event_process(const string&, Event*, const Opus_env&);

int main(int argc, char* argv[])
{

Msg m;
m.set_rpt_level(Msg::ALL);

Opus_env opus(argc, argv);
if (!opus.is_initialized()) {

m << sev(Msg::F) << type(Msg::SEVERE) <<
"OPUS failed to initialize." << endm;

exit(EXIT_FAILURE);
}

24

Register callbacks.

Polling loop.

Halt_event::add_callback(halt_event_process);
Osf_event::add_callback(osf_event_process);

try {
while (true) {

Event* e = opus.poll();
e->process(opus);
delete e;

}
}
catch(Opus_exceptions& oe) {

m << sev(Msg::F) << type(Msg::SEVERE) << oe.which() << endl;
m << oe.str() << endm;
return (EXIT_FAILURE);

}
catch(...) {

m << sev(Msg::F) << type(Msg::SEVERE) <<
"A non-OAPI exception occurred." << endm;

return(EXIT_FAILURE);
}

}

case2_classes.h:

#ifndef CASE2_CLASSES_LOADED
#define CASE2_CLASSES_LOADED

#include <string>
#include <vector>
#include "opus_env.h"
#include "event.h"

class Association {
public:

Association(const string&); // construct given association name

void add_member(const string&); // add member to this association

// remove members from Event
void purge_evt_members(const Opus_env&, Event*) const;

string name() const; // get association name

private:
const string name; // association name
vector<string> members; // list of association members

};

#endif

case2_classes.cpp:

#include "case2_classes.h"
#include "osf.h"
#include "dataset.h"

using namespace std;

Association::Association(const string& aname) : name(aname) {}

void Association::add_member(const string& m)
{

// don't allow duplicates
if (members.find(m) == members.end()) members.push_back(m);

}

void Association::purge_evt_members(const Opus_env& opus, Event* e) const
{

// create search template

25

Call functions to process the
event.

Osf* osf = opus.new_osf();
osf->search_mask_all();
Dataset* dset = new Dataset;

// remove members from Event (if present)
typedef vector<string>::const_iterator VI;
for (VI i = members.begin(); i != members.end(); i++) {

dset->assign(*i);
osf->set_field(dset);
try {

e->remove_entry(osf);
}
catch(...) {

// ignore no match
}

}
delete osf;
delete dset;

}

string Association::name() const
{

return(name);
}

case2_evt_hdlrs.cpp:

#include <iostream>
#include <vector>
#include "opus_env.h"
#include "opus_lock.h"
#include "event.h"
#include "msg.h"
#include "obs_stat.h"
#include "pstat.h"
#include "osf.h"
#include "opus_exceptions.h"
#include "case2_classes.h"

using namespace std;

// Osf_event callback function
void osf_event_process(

const string& title, /* Trigger name */
Event* evt, /* Pointer to the OSF Event */
const Opus_env& opus) /* Reference to Opus_env */

{
Msg m;

m << sev(Msg::D) << "Processing OSF(s): " << endl;
Event::const_iterator vi;
for (vi = evt->begin(); vi != evt->end(); vi++) {

m << (*vi)->str() << endl;
}
m << endm;

vector<string> asscns;
vector<Association*> alist;
try {

// get list of possible associations
get_all_asscns(evt, asscns);

// check if any of those associations are
// completed by the event entries
prune_incompletes(asscns, evt, alist);

}
catch(Severe<void*>) {

m << sev(Msg::E) << type(Msg::SEVERE) <<
"Failed to obtain database information for event processing; "
"ignoring event." << endm;

opus.close_event(Opus_env::IGNORE_EVENT, evt);

26

Locks must be obtained for the entries
in the event before attempting to close
the event.

return;
}

// attempt to locate & update association ID for
// each complete association
update_ass_osf(opus, evt, alist);
for (int i = 0; i < alist.size(); i++) delete alist[i];

// mark members complete
vector<Opus_lock*> locks;
evt->lock_list(locks);

// handle failed locks in a simplistic way
int i = 0;
vi = evt->begin;
while(vi != evt->end) {

if (locks[i] == 0) {
m << sev(Msg::W) << type(Msg::LOCK) <<

"Failed to obtain lock on OSF - trying again..."
<< endm;

sleep(5);
try {

locks[i] = evt->lock_entry(*vi);
}
catch(...) {

// mark item as failed and issue error
m << sev(Msg::E) << type(Msg::LOCK) <<
"Failed to obtain lock again. Dropping entry:"
<< endl << (*vi)->str() << endm;

failed_entries.push_back((*vi)->clone());
}

}
vi++;
i++;

}
// remove failed entries from event
for (i = 0; i < failed_entries.size(); i++) {

evt->remove_entry(failed_entries[i]);
delete failed_entries[i];

}

// close event
opus.close_event("UPDATE_OSF", evt);

for(int i = 0; i < locks.size(); i++) delete locks[i];

}

// Halt_event callback function
void halt_event_process(

const string& title,
Event* evt,
const Opus_env& opus)

{
Msg m;
m << "HALT command issued. Terminating." << endm;
exit(EXIT_SUCCESS);

}

case2_process.cpp:

#include <vector>
#include <string>
#include "event.h"
#include "dataset.h"
#include "case2_classes.h"

using namespace std;

void get_all_asscns(
const Event* e, // I - OSF event

27

vector<string>& asscns) // O - list of possible associations
{

Msg m;

// for each member, get association it belongs to
Event::const_iterator ei = e->begin();
Dataset* d = new Dataset;
string s;
while(ei != e->end()) {

(*ei)->get_field(d); // fetch dataset name from OSF
try {

DB_get_assn_for_mem(d->ustr(), s); // gets assn. name given member name
}
catch(...) {

m << sev(Msg::E) << type(Msg::MISSING) <<
"Association name lookup failed for: " <<
d->ustr() << endm;

delete d;
throw Severe<void*>(0);

}
asscns.push_back(s); // place association name in vector
m << sev(Msg::D) << d->ustr() " belongs to " << s << endm;
ei++;

}
// remove duplicates
sort(asscns.begin(), asscns.end());
vector<string>::iterator vi = unique(asscns.begin(), asscns.end());
asscns.erase(vi, asscns.end());

delete d;
}

void prune_incompletes(
vector<string>& asscns, // I/O - possible assns
Event* e, // I - OSF event
vector<Association*>& alist) // O - complete associations

{
Msg m;

// for each association, check if all members present
vector<string>::iterator vi = asscns->begin();
Event::iterator ei = e->begin();
Osf* mosf = dynamic_cast<Osf*>((*ei)->clone()); // will need an OSF later
Dataset* d = new Dataset;
string s;
vector<string> mems;
vector<Entry*> mem_its;
bool incomplete;
Association* ac;
while(vi != vi->end()) { // loop over each possible association

try {
DB_get_assn_members(*vi, mems); // gets member names for assn.

}
catch(...) {

m << sev(Msg::E) << type(Msg::MISSING) <<
"Association member lookup failed for: " <<
*vi << endm;

delete d;
delete mosf;
throw Severe<void*>(0);

}
incomplete = false;
for(int i = 0; i < mems.size(); i++) {

d.assign(mems[i]);
mosf->search_fill_all(); // create search template
mosf->set_field(d);
if ((ei = e->find_entry(mosf)) == e->end()) {

incomplete = true;
break;

} else {
mem_its.push_back((*ei)->clone());

28

}
}
if (incomplete) { // remove any existing members from event

for(int i = 0; i < mem_its.size(); i++) {
e->remove_entry(mem_its[i]);
delete mem_its[i];

}
m << sev(Msg::D) << "Association incomplete: " << *vi << endm;

} else {
m << sev(Msg::D) << "Association complete: " << *vi << endm;

// create association object
ac = new Association(*vi);
for(int i = 0; i < mem_its.size(); i++) {

mem_its[i]->get_field(d);
ac->add_member(d->ustr());
delete mem_its[i];

}
alist.push_back(ac);

}
mem_its.clear();
mems.clear();
vi++;

}
delete d;
delete mosf;

}

void update_ass_osf(
const Opus_env& opus, // I - Opus_env object
Event* evt, // I - the Event
const vector<Association*>& alist) // I - associations

{
// create search template
Osf* aosf = opus.new_osf();
aosf->search_fill_all();
Data_id* asscls = new Data_id("asn");
aosf->set_field(asscls);
delete asscls;

Dataset* assnm = new Dataset;
vector<Entry*> res;
typedef vector<Association*>::const_iterator VI;
for (VI i = alist.begin(); i != alist.end(); i++) {

assnm.assign((*i)->name());
aosf->set_field(assnm); // set Dataset name to search on
res.clear();
if (opus.find_osf(aosf, res)) {

Osf_lock* lock = 0;
try {

lock = opus.lock_osf(res[0]); // assumes unique OSF
delete res[0];

}
catch(...) {

Msg m;
m << sev(Msg::E) << type(Msg::LOCK) <<

"Failed to acquire lock on " << (*i)->name() <<
". Skipping ASN." << endm;

(*i)->purge_evt_members(evt); // remove members from Event
delete res[0];
continue;

}
Osf* osf = lock->get_target();
opus.apply_status(osf, "UPDATE_OSF");
delete osf;
delete lock; // release lock & free memory

} else {
Msg m;
m << sev(Msg::E) << type(Msg::MISSING) <<
"Could not locate ASN OSF: " << (*i)->name() << endm;

(*i)->purge_evt_members(evt); // remove members from Event

29

}
}
delete aosf;
delete assnm;

}

Non-Pipeline Application

The following example demonstrates how a non-pipeline application gains access to the
OPUS blackboards and utilities through Opus_env. The code is identical to the actual tool
osf_update.

osf_update.cpp:

#include <iostream>
#include <stdlib.h>
#include <string>
#include <vector>
#include "opus_env.h"
#include "field.h"
#include "osf.h"
#include "dataset.h"
#include "data_id.h"
#include "dcf_num.h"
#include "obs_stat.h"
#include "msg.h"
#include "sys_public.h"

using namespace std;

const char usage[] = "Usage:\n\t osf_update -p pathfilename -f filename"
" [-t type] \n\t\t [-n number] [-m new_dcf] [-c column]"
" -s status\n\nExample:\n\t osf_update -p blue.path -f "
"n32s1496 \n\t\t -t nic -n 123 -c DP -s p \n\n"
"note: the path file must be in OPUS_DEFINITIONS_DIR \n\n";

int main(int argc, char* argv[])
{

Msg m;

//
// initialize as non-pipeline application
//
Opus_env opus(argc, argv, false);
if (!opus.is_initialized()) {

m << sev(Msg::E) << type(Msg::SEVERE) <<
"osf_update - Failed to initialize OPUS environment." << endm;

exit(EXIT_FAILURE);
}

//
// validate command-line args
//
string path;
string obs_name;
string status;
vector<string> values;
opus.get_option(string("-p"), values);
if (values.size() == 0) {
m << sev(Msg::E) << type(Msg::MISSING) <<

"osf_update - Missing required argument: -p" << endl << usage << endm;
exit(EXIT_FAILURE);

}

The third argument to the Opus_env constructor
indicates that this is a non-pipeline application.

Command-line parsing is up to the
application in this case.

30

path = values[0];
values.clear();
opus.get_option(string("-f"), values);
if (values.size() == 0) {

m << sev(Msg::E) << type(Msg::MISSING) <<
"osf_update - Missing required argument: -f" << endl << usage << endm;

exit(EXIT_FAILURE);
}
obs_name = values[0];
values.clear();
opus.get_option(string("-s"), values);
if (values.size() == 0) {

m << sev(Msg::E) << type(Msg::MISSING) <<
"osf_update - Missing required argument: -s" << endl << usage << endm;

exit(EXIT_FAILURE);
}
status = values[0];
values.clear();

//
// initialize path
//
char pnm[FILENAME_MAX];
SYS_void_get_file_name(path.c_str(), pnm);
opus.set_path(string(pnm));

//
// create new OSF object in memory
//
Osf* osf = opus.new_osf();
osf->search_fill_all();

//
// set individual fields
//
Field* f;
f = new Dataset(obs_name);
osf->set_field(f);
delete f;

opus.get_option(string("-t"), values);
if (values.size() > 0) {

f = new Data_id(values[0]);
values.clear();
osf->set_field(f);
delete f;

}

opus.get_option(string("-n"), values);
if (values.size() > 0) {

f = new Dcf_num(values[0]);
values.clear();
osf->set_field(f);
delete f;

}

//
// search for OSF
//
vector<Entry*> results;
int num;
if (num = opus.find_osf(osf, results)) {

if (num > 1) {
m << sev(Msg::E) << type(Msg::AMBIG) <<

"osf_update - More than one (count=" << num << ") OSF matched: "
<< endl << osf->str() << endl << "Matches:" << endl;

for (int i = 0; i < num; i++) m << (results[i])->str() << endl;
m << endm;
exit(EXIT_FAILURE);

}
//

The set_path member function
instantiates the OSF and PSTAT
blackboards.

31

// obtain OSF lock
//
Osf_lock* lock;
delete osf;
if (!(osf = dynamic_cast<Osf*>(results[0]))) {

m << sev(Msg::E) << type(Msg::SEVERE) <<
"osf_update - Unable to cast search result to OSF." << endm;

exit(EXIT_FAILURE);
}
try {

lock = opus.lock_osf(osf);
}
catch(...) {

m << sev(Msg::E) << type(Msg::SEVERE) <<
"osf_update - Failed to obtain lock for OSF." << endm;

exit(EXIT_FAILURE);
}

//
// apply DCF NUMBER update
//
Osf* new_osf = dynamic_cast<Osf*>(osf->clone());
opus.get_option(string("-m"), values);
if (values.size() > 0) {

f = new Dcf_num(values[0]);
values.clear();
new_osf->set_field(f);
delete f;

}

//
// apply status update
//
Obs_stat* ostat;
vector<string> columns;
opus.get_option(string("-c"), columns);
if (columns.size() == 0) {

ostat = new Obs_stat(status);
} else {

ostat = new Obs_stat();
osf->get_field(ostat);
opus.get_option(string("-s"), values);
if (columns.size() != values.size()) {

m << sev(Msg::E) << type(Msg::MISUSE) <<
"osf_update - The number of -c options does not match the "
"number of -s options." << endm;

delete lock;
exit(EXIT_FAILURE);

}
int pos;
for (int i = 0; i < columns.size(); i++) {

pos = opus.get_stage_position(columns[i]);
ostat->set_position(pos, (values[i])[0]);

}
}
new_osf->set_field(ostat);
delete ostat;

//
// apply change to blackboard
//
opus.replace_osf(osf, new_osf);

} else {
m << sev(Msg::E) << type(Msg::MISSING) <<
"osf_update - Unable to locate OSF: " << endl << osf->str() << endm;

delete lock;
exit(EXIT_FAILURE);

}

//

32

// Release lock
//
delete lock;

return (EXIT_SUCCESS);

}

