
User’s Guide

Fpack FITS Image Compression Utility

W. D. Pence, NASA/GSFC

R. Seaman, NOAO

R. L. White, STScI

January 2010

1. Introduction

Fpack is a utility program for optimally compressing images in the FITS (Flexible Image

Transport System; http:// fits.gsfc.nasa.gov) data format. The associated funpack program restores

the compressed image file back to its original state. These programs may be run from the host

operating system command line and are analogous to the GZIP and GUNZIP utility programs

except that they are optimized for FITS format images and offer a wider choice of compression

options.

Fpack stores the compressed image using the FITS tiled image compression convention (http://

fits.gsfc.nasa.gov/fits registry.html). Under this convention the image is first divided into a user-

configurable grid of rectangular tiles, and then each tile is individually compressed and stored in a

variable-length array column in a FITS binary table. By default, fpack usually adopts a row-by-row

tiling pattern.

The tiled image compression convention can support any number of different compression

algorithms. The fpack and funpack utilities call on routines in the CFITSIO library (http://

heasarc.gsfc.nasa.gov/fitsio) to perform the actual compression and uncompression of the FITS

images. Currently, the GZIP, Rice, and H-compress general purpose algorithms and a more spe-

cialized PLIO IRAF pixel list compression algorithm are supported.

2. Image Compression Overview

This section provides background information about image compression in general and the

FITS tiled image convention in particular. This is followed in Sections 3 and 4 by more detailed

information on the fpack and funpack command line options.
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2.1. Benefits of fpack and the Tiled Image Compression Algorithm

Using fpack to compress FITS images offers a number of advantages over the other commonly

used technique of externally compressing the whole FITS file with GZIP:

1. Fpack generally offers higher compression ratios and faster compression speed than GZIP.

2. The FITS image header keywords remain uncompressed and can be read or written without

any additional overhead.

3. Each HDU of a multi-extension FITS file is compressed separately, thus it is not necessary to

uncompress the entire file to read a single image in a multi-extension file.

4. The feature of dividing the image into rectangular tiles before compression enables faster

access to small subsections of the image because only those tiles contained in the subsection

need be uncompressed.

5. The compressed image is itself a valid FITS file and can be manipulated by other general

FITS utility software.

6. Fpack also supports lossy compression techniques that achieve significantly higher compression

than lossless compression algorithms in situations where it is not necessary to exactly preserve

every bit of the original image pixel values. This is especially relevant when compressing 32-

bit floating point FITS images where there is usually little justification for preserving the full

6 decimal places of numerical precision of each pixel value.

7. Fpack and funpack automatically update the CHECKSUM keywords in the compressed and

uncompressed files to help verify the integrity of the FITS files.

Data providers can minimize the data storage and network bandwidth resources needed to

archive and distribute FITS images by compressing them first with fpack. Users can then uncom-

press the file with funpack to convert them back into the standard FITS image format before doing

further analysis. The benefits of using fpack are magnified, however, when the analysis software is

capable of directly reading and writing the files in the compressed form.

Any software application that uses the CFITSIO library (http://heasarc.gsfc.nasa.gov/fitsio)

will inherit the ability to read or write tile-compressed FITS images. The image compression

or uncompression is performed internally by the CFITSIO library routines, so in general, the

application program itself does not need to know anything about the tiled image compression

format. The main exception is that when writing compressed images, the application program may

need to call an additional routine to define which compression algorithm to use, along with the values

of other optional compression parameters. The fpack and funpack utilities are themselves examples

of applications that use CFITSIO to perform the compression and uncompression operations on

the images.
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In addition to CFITSIO, the ds9 image display program and the IRAF data analysis system

currently provide some support for the tile-compressed FITS image format. It is anticipated that

other analysis systems will also add support for this tiled image compression format as it become

more widely used. In the meantime, funpack may be used to uncompress the images back into

standard FITS images for compatibility with other analysis software that does not yet directly

support the compressed format.

2.2. Compression Versus Noise

When images are losslessly compressed, the compression ratio depends almost completely on

one simple factor: the amount of the noise in the pixel values. The noise, by definition, cannot be

compressed, so the compression ratio of an image will be inversely proportional to the total number

of noise bits in the image. As is discussed in greater detail in a separate paper (Pence, Seaman, &

White, 2009; PASP 121,414; http://arxiv.org/abs/0903.21401), the amount of noise in a image can

be calculated from the measured standard deviation (σ) of the pixels in the “background” areas of

the image (e.g., excluding bright stars or other objects in the image) which typically have close to

a Gaussian intensity distribution. The average number of noise bits per pixel is given by

Nbits = log2(σ
√

12) = log2(σ) + 1.792 (1)

Since these noise bits are fundamentally uncompressible, the maximum possible compression ratio,

in the ideal case where all the remaining bits are compressed to zero, is simply given by the ratio

BITPIX / Nbits (where BITPIX is the number of bits in each pixel value). No actual compression

algorithm can achieve this theoretical limit, so in practice the compression ratio is given by

R = BITPIX/(Nbits + K) (2)

where K is a measure of the efficiency of the particular compression algorithm. For the Rice

algorithm, K has a value of about 1.2, and for Hcompress it is about 0.8. The k value for GZIP is

much larger, typically about 4 or 5.

2.3. Lossless Compression of Integer FITS Images

In the previously mentioned paper, we used a large set of direct imaging CCD exposures of star

fields in the night sky, plus the associated calibration exposures, to compare the compression speeds

and file compression ratios for the 3 general purpose compression algorithms that are currently

supported by fpack, namely, Rice, GZIP, and Hcompress. We also compared these to the method

of compressing the entire FITS file with the host-level GZIP file compression program.

Figure 1 neatly summarizes the main results of that study. It shows that the Rice and GZIP

compression ratios are tightly correlated with the amount of noise in the image as predicted by
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equation 2 (shown by the solid lines). The Rice algorithm clearly produces much better compression

than GZIP, and is within 85% – 90% of the maximum possible compression (for an algorithm with

K = 0) show by the dashed line. It is also interesting to note that the different types of images –

bias frames, short calibration exposures of reference stars, and deep exposures of the sky – contain

distinctly different amounts of noise because the photon shot noise is proportional to the square

root of the number of detected photons
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Fig. 1.— Comparison of the compression ratios using Rice and GZIP plotted as a function of

the noise in the 16-bit integer images. The different types of images contain characteristically

different amounts of noise, as labeled. The dashed line shows the theoretical upper limit for an

ideal compression algorithm.

The mean file compression ratios and the relative compression and uncompression CPU times

for these 4 different compression methods are listed in Table 1. These values are the mean for all

16-bit integer images in the sample data set and the CPU times are relative to the speed of the

Rice algorithm.

As shown in the table, the Rice and Hcompress achieve significantly larger compression of

these astronomical images than GZIP. The GZIP compressed files are on average about 1.4 times

larger than the Rice or Hcompressed files. Hcompress produces about 3% better compression than

Rice, but for most applications this small gain is not worth the much greater CPU times required

to compress and uncompress the images with Hcompress.

The Rice compression algorithm is much faster than Hcompress. Rice compression is also

much faster than GZIP and the uncompression speed is about the same as GUNZIP. Note that the
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factor of 2 difference in speed between the host-level GZIP program and the identical algorithm used

within the tiled FITS image implementation is due to the difference in I/O methods. The host-level

GZIP program can read and write the files more efficiently as continuous streams, whereas the FITS

implementation requires that the input and output files be copied to and from intermediate storage

buffers to provide random access to any location within the FITS file. As a benchmark point of

reference, a Linux machine with a 2.4 GHz AMD Opteron 250 dual core processor can compress or

uncompress a 50 MB 16-bit integer image (5000 x 5000 pixels) with the Rice compression algorithm

1 second of CPU time .

Similar trends are seen when compressing 32-bit integer images, only the compression factors

that are achieved are typically twice that of a 16-bit image, given the same noise level in both

images.

2.4. Compression of Floating Point FITS Images

It is generally not practical, nor necessary, to losslessly compress floating point FITS images

(that have BITPIX = -32 or -64). This is because most of the algorithms do not support compression

of floating point data, and even when they do (e.g., GZIP), there is rarely any justification for

preserving the full 6 decimal places of precision in each pixel value. In practice, a large fraction

of the bits in the mantissa of each pixel value only contain uncompressible noise. For this reason,

fpack usually first converts the floating point pixel values into 32-bit integers using a linear scaling

function:

IntegerV alue = (FloatingPointV alue − ZeroPoint)/ScaleFactor (3)

This array of scaled integers is then compressed with the Rice algorithm by default. When the

image is subsequently uncompressed, the integer values are inverse scaled to closely, but not exactly,

reproduce the original floating point pixel values. Separate scale and zero point values are computed

for each tile of the image.

The value of ScaleFactor controls how closely the inverse scaled values approximate the original

floating point values. Making ScaleFactor smaller reduces the spacing between the quantized levels

and thus more closely preserves the original pixel values. However, this also magnifies the dynamic

Table 1. 16-bit integer image compression

Rice Hcompress Tiled-GZIP Host-GZIP

Compression Ratio 2.11 2.18 1.53 1.64

Relative Compression Time 1.0 2.8 5.6 2.6

Relative Uncompression Time 1.0 3.1 1.9 0.85
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range and the noise level in the integer array that is to be compressed which adversely affects the

amount of compression that is achieved. Thus, there is a direct trade-off between providing greater

fidelity or achieving greater compression.

Since it is not easy to directly determine an appropriate ScaleFactor value for a given image,

fpack instead provides a parameter called “q” for specifying the quantized level spacing relative to

the sigma of the measured noise in background areas in the image. The image pixel values will be

quantized into levels that have a spacing of sigma/q. The number of noise bits that are retained

in each pixel value is given by

Nbits = log2(q) + 1.792 (4)

From this one can compute the expected compression ratio as a function of q from Equation 1.

One important refinement to this quantization procedure is to add a small amount of random

noise to the floating point value before scaling it to an integer. That same random value is sub-

tracted when converting back to the floating point value, so there is no net increase in the amount

of noise in the image. This has the effect of randomly shifting the zero point in the grid of quantized

levels for each pixel, so that the whole image is not quantized into exactly the same grid of levels.

This technique, called “subtractive dithering”, makes it possible to detect low amplitude features

in the quantized image through an effect known as “stochastic resonance”. In astronomical images

this is especially important for accurately preserving the mean value of the background sky level

which is needed when measuring the flux of faint sources in the image.

Using too small a value of q could result in unrecoverable loss of information, whereas too

large a value of q will needlessly preserve more of the noise in the image and reduce the amount of

compression that is achieved. Recent tests (Pence, White, & Seaman, ADASS 2009) suggest that

the default value of q = 4 in fpack is quite conservative and that smaller values of q as low 1 may

be sufficient to preserve the significant information in typical astronomical images. Users are urged

to perform quantitative tests on there own data sets using different values of q to determine the

appropriate value for their particular application.

In rare situations, or for test purposes, it may be desirable to losslessly compress floating point

FITS images. This can be accomplished in fpack by selecting the GZIP compression algorithm and

a q value of 0 (e. g., “fpack -g -q 0”). This will preserve every bit in the floating-point pixels at the

expense of much lower compression ratios than if the recommended integer quantization technique

is used.
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3. fpack Command Line Options

The fpack program is invoked on the computer operating system command line,

fpack [Options] [FileNames]

where the “Options” control the various compression options and “FileNames” is a list of one or

more FITS file names to be compressed. The available options are described below and must appear

before the list of files. The file names may contain the usual wildcard characters (*, $, etc.) that

will be expanded by the command shell. An input FITS file can be read from the standard stdin

file stream by specifying a hyphen as the file name.

1. Compression Algorithm Options

-r Rice [default]

-h Hcompress

-g GZIP (per-tile)

-p IRAF pixel list compression algorithm. This can only be applied

to images whose pixel values all lie in the range 0 to 2**24.

-d No compression (debugging mode)

2. Tiling Pattern Options

A row by row tiling pattern is used by default with the Rice, GZIP, and PLIO compression

algorithms (i.e., the tiles are one dimensional and contain NAXIS1 pixels each). The Hcom-

press algorithm is inherently 2-dimensional, therefore the default is to use 16 rows of the

image per tile. If this would cause the last tile of the image to only contain a small number

of rows, then a slightly different tile size is chosen so that the last tile is similar in size to the

other tiles. The default tile sizes can be overridden with one of the following fpack options:

-w Compress the whole image as a single large tile. Appropriate

for small files where the rows are too short to be

efficiently compressed individually.

-t <axes> Comma separated list of tile dimensions (e.g., -t 200,200

for tiles that are 200 x 200 pixels in size)

3. Floating Point Image Compression Options

-q <level> Quantized level spacing [Default = 4]
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The pixel values in floating point FITS images are quantized into linearly scaled

integer values prior to being compressed with the Rice algorithm. This improves

the compression ratio by eliminating some of the noise in the pixel values, but

consequently the original pixel values are not exactly preserved. The fidelity of the

compressed image is controlled by specifying how finely the quantized levels should

be spaced relative to the sigma of the noise measured in the background regions of

each image tile. The default q value is 4 so that the quantized levels are spaced at

1/4th of the noise sigma value. Recent experiments suggest that this default q value

is fairly conservative and that greater compression can be achieved without losing

any significant astrometric and photometric precision in the image by using smaller

values of q (as low as 2 or 1). The approximate compression ratio for different q

values is shown in Table 2.

In some instances it may be desirable to specify the exact q value (not relative to

the measured noise), so that all the tiles in the image are compressed using the

identical value. This is done by specifying the negative of the desired value. The

-T option (described below) can be used to calculate the noise level in the image,

which may be useful in determining an appropriate q value.

A numerical technique called “subtractive dithering’ is applied to the quantized

values to better preserve faint features in the image (as described previously). For

better efficiency, fpack uses one of 10000 pre-established sequences of random num-

bers when doing this dithering. It is undesirable to use exactly the same dithering

sequence for every image because this can cause artifacts in the difference or sum

of 2 compressed images. Which sequence to use for a given image is determined by

a ‘seed’ value that is computed in one of 4 ways:

(a) By default, the seed is computed from the system clock time when the program

starts. This ensures that a different seed is randomly chosen each time fpack

is run, but it also means that the pixel values in the compressed image will be

slightly (but insignificantly) different each time it is compressed with fpack.

(b) If one wants the same seed to be reused every time a given image is compressed,

then specify “-qt” instead of “-q”. In this case the seed value will be computed

from the checksum of the first tile of image pixels that is compressed. The

same seed value will be used for a given image, however, if 2 images have the

same pixel values in the first tile (e.g., if there is a blank border around both

Table 2. Floating Point Image Compression Ratios

q 16 8 4 2 1

Ratio 4.5 5.4 6.5 8.2 11
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images) then both images will be compressed using the same dithering pattern.

(c) One can specify exactly which one of the 10000 dithering patterns to use by

appending an integer number in the range 1 to 10000 to q, as in “-q3008”.

(d) Lastly, one can turn off subtractive dithering by specifying -q0. This option is

not recommended for general use.

-n <sigma>

This rarely used parameter rescales the pixel values in a previously scaled image

to improve the compression ratio by reducing the noise in the image. This option

is intended for use with FITS images that use scaled integers to represent floating

point pixel values, and in which the scaling was chosen so that the range of the

scaled integer values covers the entire allowed range for that integer data type. The

amplitude of the noise in these scaled integer images is typically so huge that they

cannot be effectively compressed. This ‘n’ option rescales the pixel values so that

the noise sigma will be equal to the specified value of n. Appropriate values of sigma

will likely be in the range from 1 (for low precision and the high compression) to

16 (for the high precision and lower compression).

4. Lossy compression of integer images with Hcompress

-s <scale>

Scale factor for lossy compression when using Hcompress. The default value is 0

which implies lossless compression. Positive scale values are interpreted as relative

to the sigma of the noise in the image. Scale values of 1.0, 4.0, and 10.0 will

typically produce compression factors of about 4, 10, and 25, respectively, when

applied to 16-bit integer images. In some instances it may be desirable to specify

the exact scale value (not relative to the measured noise), so that all the tiles in

the image, and all the images in a data set, are compressed with the identical scale

value, regardless of slight variations in the measure. This is done by specifying the

negative of the desired value.

Users should carefully evaluate the compressed images when using this lossy com-

pression option to make sure that any essential information in the image has not

been lost.

5. Output File Name Options

The compressed output file name is usually constructed by appending ‘.fz’ to the input file

name, and the input file is not deleted. This behavior may be modified with the following

options:
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-F Force the input file to be overwritten by the compressed file

with the same name.

-D Delete the input file after creating the compressed output file.

-Y Suppress the prompts to confirm the -F or -D options

-S Write the compressed FITS file to the stdout stream instead of to a file.

6. Other Miscellaneous Options

-v Verbose mode; list each file as it is processed

-L List information about all the extensions in the input files without compressing them

-C Do not update the FITS checksum keywords

-H Display a summary help file that describes the available fpack options

-V Display the fpack and CFITSIO version numbers

-R <filename> Write the comparison test report (produced by -T) to a

text file

-T Produce a report showing the compression statistics for the

main compression algorithms. The input files remain unchanged.

See the appendix for a description of the report format.

4. funpack Command Line Options

funpack shares many of the same options as fpack as shown below:

1. Output File Name Options

The uncompressed output file name is usually constructed by stripping the ‘.fz’ suffix from

the input file name, and the input file is not deleted. This behavior may be modified with

the following options:

-F Force the input file to be overwritten by the uncompressed file

with the same name.

-D Delete the input compressed file after uncompressing it

-P <pre> Create the output file name by prepend the <pre> string to the

input file name

-O <name> Specify the full name of the uncompressed output file

-S Write the uncompressed FITS file to the stdout stream

-Z Recompress the output file with the host GZIP program

2. Other Miscellaneous Options
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-v Verbose mode; list each file as it is processed

-L List all the extensions in the input files without uncompressing them

-C Do not update the FITS checksum keywords

-H Display a summary help file that describes the available funpack options

-V Display the funpack and CFITSIO version numbers

5. Installing fpack and funpack

The latest pre-built binary executable versions of fpack and funpack for many common com-

puter platforms are available at http:// heasarc.gsfc.nasa.gov/fitsio/fpack. The source code is also

include in the source file distribution of the CFITSIO library.

To build fpack and funpack from the source code on unix systems, first unpack the CFITSIO

distribution.tar file into an empty directory, and then execute the following commands:

./configure

make

make fpack

make funpack

This will create the fpack and funpack executable files which may be copied to any other suitable

location.
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A. Example Comparison Report

The comparison report that is produced by the fpack -T option has the following format:

___________________________________________________________________________

File: ct655046.fits

Ext BITPIX Dimens. Nulls Min Max Mean Sigma Noise3 Nbits MaxR

0 16 (1112,4096) 0 -31503 25967 -26679.3 2.5e+03 56.8 7.6 2.10

Type Ratio Size (MB) Pk (Sec) UnPk Exact ElpN CPUN Elp1 CPU1

Native 0.024 0.016 0.013 0.010

RICE 1.83 9.11 -> 4.98 0.57 0.55 Yes 0.053 0.047 0.045 0.040

HCOMP 1.85 9.11 -> 4.92 1.91 1.56 Yes 0.175 0.159 0.179 0.162

GZIP 1.35 9.11 -> 6.73 3.07 1.09 Yes 0.114 0.106 0.108 0.101

NONE 0.99 9.11 -> 9.18 0.35 0.31 Yes 0.022 0.021 0.015 0.013

___________________________________________________________________________

The parameters given on the 3rd line of the report are:

Ext - extension number within the file (zero based)

BITPIX - FITS data type of the image (8, 16, 32, -32 or -64)

Dimens - image dimensions

Nulls - number of undefined or null pixels in the image

Min, Max - the minimum and maximum values in the image

Mean - mean value of all the non-null pixels

Sigma - standard deviation of all the non-null pixels

Noise3 - a measure of the noise in the background regions of the image

Nbits - number of noise bits per pixel = log2(noise3) + 1.792

MaxR - theoretical maximum possible compression ratio = BITPIX / Nbits

The table, starting on line 5 of the report has the following columns:

Type - name of compression method, if any

Ratio - file compression ratio

Size - uncompressed and compressed sizes of the files, in MB

Pk - the CPU time in seconds to compress the image with fpack

UnPk - the CPU time in seconds to uncompress the image with funpack

Exact - is the compression lossless?

ElpN - elapsed time to read the whole image at one time (s/MB)
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CPUN - CPU time to read the whole image at one time (s/MB)

Elp1 - elapsed time to read the image, one row at a time (s/MB)

CPU1 - CPU time to read the image, one row at a time (s/MB)

The first row in this table shows the speed when reading the uncompressed FITS image. The next

3 rows show the compression ratios and speeds when using Rice, Hcompress, and GZIP. The last

row shows the speeds when the image is written to and read from the FITS tiled image format

without doing any compression.


