CONTENTS

1 wfpc2cte 3
2 wfpc2destreak 5
3 wfpc2util 11
4 Indices and tables 13
 Python Module Index 15
 Python Module Index 17
 Index 19
This package contains various functions for analyzing and processing HST/WFPC2 images.

Modules:
WFPC2CTE - Module for computing the CTE degradation for WFPC2 images

This module updates the header of the input WFPC2 image with standardized computations of the effect of CTE based on the algorithm published by Dolphin (2004, http://purcell.as.arizona.edu/wfpc2_calib/2004_12_20.html).

ASSUMPTIONS for the COMPUTATION

1. The CTE gets computed for a source at the chip center.
2. The background (in electrons) gets defined by the clipped mode of the central 200x200 pixels from the image.
3. The source is assumed to have 100 electrons, 1000 electrons and 10000 electrons in the aperture.
4. The reported CTE is the sum of the XCTE and YCTE computed from Dolphin’s algorithm.

INPUT

The sole input for this task is the filename of the WFPC2 image.

If the input image is in GEIS format, it will convert it to a multi-extension FITS formatted file, then update the FITS file while leaving the GEIS image un-modified.

If the input image is already multi-extension FITS, it will update the header directly.

If the input image is waived FITS, it will quit with a message telling the user to first convert the file to GEIS. The user can then provide the GEIS image as input.

OUTPUT

The keywords which get updated are:

- `CTE_1E2` - CTE for a source with an intensity of 100 electrons
- `CTE_1E3` - CTE for a source with an intensity of 1000 electrons
- `CTE_1E4` - CTE for a source with an intensity of 10000 electrons

SYNTAX

This task can be run on an input WFPC2 image using either of the following calls:

```python
wfpc2cte.compute_CTE(filename, quiet=True)
-or-
wfpc2cte.run(filename, quiet=True)
```

where the filename is the name of the input WFPC2 image.
EXAMPLE

The syntax for running this task on a WFPC2 file named ‘u40x0102m.c0h’:

```python
import wfpc2cte
wfpc2cte.run('u40x0102m.c0h')
```

The command to print out this help file:

```
wfpc2cte.help()
```

FUNCTIONS

```python
wfpc2tools.wfpc2cte.compute_CTE(filename, quiet=True, nclip=3, update=True)
```

Compute the CTE correction for a 100, 1000 and 1e+4 DN source in a WFPC2 chip. These correction values will be written to the WFPC2 image header as the CTE_1E2, CTE_1E3 and CTE_1E4 keywords respectively.

Parameters

- **filename**: str
 - Name of WFPC2 image
- **quiet**: bool, optional [Default: True]
 - Specifies whether or not to print verbose messages during processing
- **nclip**: int [Default: 3]
 - Number of clipping iterations for computing the chip’s pixel values
- **update**: bool [Default: True]
 - Specifies whether or not to update the input image header with the computed CTE correction values

```python
wfpc2tools.wfpc2cte.compute_XCTE(xpos, bg)
```

```python
wfpc2tools.wfpc2cte.compute_YCTE(chip_values, yr, xcte)
```

```python
wfpc2tools.wfpc2cte.compute_chip_values(extn, gain, nclip=3)
```

```python
wfpc2tools.wfpc2cte.help()
```

```python
wfpc2tools.wfpc2cte.run(filename, quiet=True, nclip=3)
```

```python
wfpc2tools.wfpc2cte.update_CTE_keywords(hdr, cte, quiet=False, update=True)
```
WFPC2DESTREAK

This module implements the destreak correction for WFPC2 images. WFPC2Destreak - Module for performing destreak correction on WFPC2 images

Outline

1. In the ‘interior’ image region (starting to the right of the pyramid region), eliminate the CRs, and calculate the mean (im_mean) and sigma (im_sigma):
 • Over the entire c0 image, cosmic rays are identified and masked in the c0 data
 • For the entire image, the global mean and the (clipped) sigma is calculated for all unmasked pixels
 • For each row, the mean is calculated for all unmasked pixels
 • For each row, the difference between the mean and the global mean is subtracted from the c0 data

2. The modified c0 data is written to the file <dataset>_bjc_<chip>.fits (‘bjc’ stands for ‘bias jump corrected’)

Command Line Options

Linux command line short options and defaults (set in wfpc2util.py):
- g: group (default = 4)
- b: bias_thresh (default = 100000.)
- r: row_thresh (default = 0.1)
- v: verbosity (default = verbose)
- m: input_mask (default = None)
- i: niter (default = 5)

Examples

1. For a dataset with multiple groups, to process group 4 using a bias threshold=280 and row threshold=0.2:
 hal> ./wfpc2destreak.py "u96r0603m_c0h.fits" -g 4 -b 280. -r 0.2 -v

 This can also be specified using the ‘long options’:
 hal> ./wfpc2destreak.py "u96r0603m_c0h.fits" --group=4 --bias_thresh=280. --row_thresh=0.2

2. To allow the routine to run with all of the defaults:
 hal> ./wfpc2destreak.py "u96r0603m_c0h.fits"
3. For a dataset with a single group, using defaults for the thresholds:

   ```sh
   hal> ./wfpc2destreak.py "u96r0603m_c0h.fits" -g 0
   ```

4. Same as example F, but specifying an input mask to use:

   ```sh
   hal> ./wfpc2destreak.py "u96r0603m_c0h.fits" -g 0 -m "mask_u8zq0104.fits"
   ```

5. Same as example F, but specifying 3 iterations for the CR rejection

   ```sh
   hal> ./wfpc2destreak.py "u96r0603m_c0h.fits" -g 0 -i 3
   ```

6. Run the routine for group 3 of a geis image

   ```sh
   hal> ./wfpc2destreak.py "ub080106m_c0h" -g 3
   ```

Example 'A' under pyraf:

```python
--> wfp = wfpc2destreak.Wfpc2destreak( "u96r0603m_c0h.fits", group=4, bias_thresh=280, row_thresh=0.2)
--> wfp.destreak()
```

Example 'A' under stsdas (after loading hst_calib and wfpc):

```python
--> from wfpc2tools import wfpc2destreak
--> wfp = wfpc2destreak.Wfpc2destreak( "u96r0603m_c0h.fits", group=4, bias_thresh=280, row_thresh=0.2)
--> wfp.destreak()
```

or

```python
--> import wfpc2tools
--> wfp = wfpc2tools.wfpc2destreak.Wfpc2destreak( "u96r0603m_c0h.fits")
--> wfp.destreak()
```

Functions

```python
class wfpc2tools.wfpc2destreak.Wfpc2destreak(input_file, input_mask=None, group=None, verbosity=0, bias_thresh=None, row_thresh=None, niter=None)
```

Calculate magnitude of and remove streaks from specified group of wfpc2 data.

Parameters

- **input_file**: str
 - name of the c0h file to be processed

- **input_mask**: str
 - name of the input mask

- **group**: int
 - number of group to process

- **verbosity**: int
 - verbosity level (0 for quiet, 1 verbose, 2 very verbose)

- **bias_thresh**: float
 - bias threshold (no correction will be performed if this is exceeded by im_mean)

- **row_thresh**: float
 - row threshold (no correction will be performed if this is exceeded by im_mean)
row threshold (no correction will be performed if this exceeds the calculated row correction)

niter : int

number of iterations for CR rejection

Examples

```python
>>> wfpc2_d = wfpc2destreak.Wfpc2destreak( filename, input_mask=input_mask, group=group, verbosity=verbosity, bias_thresh=bias_thresh, row_thresh=row_thresh, niter=niter)
>>> wfpc2destreak.Wfpc2destreak.destreak(wfpc2_d)
```

destreak ()

Method to perform destreak correction.

print_pars ()

Print parameters method.

wfpc2tools.wfpc2destreak.check_cl_pars (input_file, group, bias_thresh, row_thresh, input_mask, niter)

When run from linux command line, verify that each parameter is valid.

Parameters

- **input_file** : str

 name of input file

- **group** : int

 number of group to process

- **bias_thresh** : float

 bias threshold (no correction will be performed if this is exceeded by im_mean)

- **row_thresh** : float

 row threshold (no correction will be performed if this exceeds the calculated row correction)

- **input_mask** : str

 name of input mask file

- **niter** : int

 number of CR rejection iterations

Returns

- **group** : int

- **row_thresh** : float

- **niter** : int

wfpc2tools.wfpc2destreak.check_neighbors (new_cr, residual, cutoff, sub_shape)

Check for cosmic rays in neighboring pixels.

Parameters

- **new_cr** : ndarray

 1-D array of (int) ones or zeros (1 indicates a cosmic ray)

- **residual** : ndarray

 1-D array of residuals (float64), subarray - fit
cutoff : float
 criterion for flagging an outlier as a cosmic ray

sub_shape : tuple
 numbers of lines and columns in subarray

Returns
 new_cr : int
 pixel position associated with identified cosmic ray,
 possibly with additional cosmic rays flagged

wfpc2tools.wfpc2destreak.check_py_pars(input_file, group, bias_thresh, row_thresh, input_mask, niter)

 When run under python, verify that each unspecified parameter should take the default value, and give the user
 the opportunity to change it.

Parameters
 input_file : str
 name of input file

 group : int
 number of group to process

 bias_thresh : float
 bias threshold (no correction will be performed if this is exceeded by im_mean)

 row_thresh : float
 row threshold (no correction will be performed if this exceeds the calculated row correction)

 input_mask : str
 name of input mask

 niter : int
 number of CR rejection iterations

Returns
 group : int
 bias_thresh : float
 row_thresh : float

wfpc2tools.wfpc2destreak.cr_reject(SubArray, niter)

 Identify and replace cosmic rays in the given subarray.

Parameters
 SubArray : ndarray
 subarray of the data

 niter : int
 the number of iterations used when rejecting cosmic rays

wfpc2tools.wfpc2destreak.fitline(x, y, mask)

 Fit a straight line to y vs x, where mask is 0.
Parameters

\texttt{x} : ndarray
\hspace{1em} float64 array of independent-variable values
\texttt{y} : ndarray
\hspace{1em} float64 array of dependent-variable values
\texttt{mask} : ndarray
\hspace{1em} int32 array of ones or zeros (0 indicates a good value)

Returns

\texttt{coeffs} : tuple
\hspace{1em} coefficients of fit: tuple of the slope and intercept

\texttt{wfpc2tools.wfpc2destreak.median(y, mask)}
Return the median of the array \(y \), ignoring masked elements.

Parameters

\texttt{y} : ndarray
\hspace{1em} array of values
\texttt{mask} : ndarray
\hspace{1em} array of (int32) ones or zeros (0 indicates a good value)

Returns

\texttt{median} : float
\hspace{1em} median of \(y \), ignoring masked elements

\texttt{wfpc2tools.wfpc2destreak.update_header(self, hdr)}
update header from input c0 file with specified header, and updated data

Parameters

\texttt{self} : object
\hspace{1em} Wfpc2destreak object containing results to be recorded to header
\texttt{hdr} : object
\hspace{1em} PyFITS header object

\texttt{wfpc2tools.wfpc2destreak.write_mask(data, filename)}
write specified mask

Parameters

\texttt{data} : ndarray
\hspace{1em} mask array
\texttt{filename} : string
\hspace{1em} mask file name

\texttt{wfpc2tools.wfpc2destreak.write_to_file(data, filename, hdr, verbosity, im_mean, im_sigma)}
Write mean and sigma to file.

Parameters

\texttt{data} : ndarray
\hspace{1em} array of floats
\texttt{filename} : string
mask file name

hdr: object :
Pyfits header object

verbosity: int :
verbosity level (0 for quiet, 1 verbose, 2 very verbose)

im_mean : float
clipped mean of image region

im_sigma : float
clipped sigma of image region
WFPC2UTIL

This module provides basic utilities required by this package for processing WFPC2 images.

`wfpc2tools.wfpc2util.all_printMsg(message, level=1)`
Print message as verbose message by default

Parameters
- **message** : string
 message be printed, if verbosity level is appropriate
- **level** : int [Default: 1 (VERBOSE)] :
 integer indicating the level of verbosity for printing this string

`wfpc2tools.wfpc2util.checkVerbosity(level)`
Return true if verbosity is at least as great as level.

Parameters
- **level** : int :
 level of verbosity to be checked against global value

`wfpc2tools.wfpc2util.printMsg(message, level=0)`
Print message based on verbosity level.

Parameters
- **message** : string
 message be printed, if verbosity level is appropriate
- **level** : int [Default: 0 (QUIET)] :
 integer indicating the level of verbosity for printing this string

`wfpc2tools.wfpc2util.setBias_thresh(bias_thresh_value)`
Copy bias_thresh to a variable that is global for this file.

Parameters
- **bias_thresh_value** : float
 value of bias_thresh

`wfpc2tools.wfpc2util.setGroup(group_value)`
Copy group to a variable that is global for this file.

Parameters
- **group_value** : int
 value of group
wfpc2tools.wfpc2util.setInput_mask(input_mask_value)
 Copy input_mask to a variable that is global for this file.

 Parameters
 input_mask_value : string
 value of input_mask

wfpc2tools.wfpc2util.setNiter(niter_value)
 Copy niter to a variable that is global for this file.

 Parameters
 niter_value : int
 value of niter

wfpc2tools.wfpc2util.setRow_thresh(row_thresh_value)
 Copy row_thresh to a variable that is global for this file.

 Parameters
 row_thresh_value : float
 value of row_thresh

wfpc2tools.wfpc2util.setVerbosity(verbosity_level)
 Copy verbosity to a variable that is global for this file.

 Parameters
 verbosity_level: int :
 an integer value indicating the level of verbosity

Note: the above only represents the primary user interface functions for this package
INDICES AND TABLES

• genindex
• modindex
• search
PYTHON MODULE INDEX

W

wfpc2tools.wfpc2cte, 3
wfpc2tools.wfpc2destreak, 5
wfpc2tools.wfpc2util, 11
PYTHON MODULE INDEX

W
wfpc2tools.wfpc2cte, 3
wfpc2tools.wfpc2destreak, 5
wfpc2tools.wfpc2util, 11
INDEX

A
all_printMsg() (in module wfpc2tools.wfpc2util), 11

C
check_cl_pars() (in module wfpc2tools.wfpc2destreak), 7
check_neighbors() (in module wfpc2tools.wfpc2destreak), 7
check_py_pars() (in module wfpc2tools.wfpc2destreak), 8
checkVerbosity() (in module wfpc2tools.wfpc2util), 11
compute_chip_values() (in module wfpc2tools.wfpc2cte), 4
compute_CTE() (in module wfpc2tools.wfpc2cte), 4
compute_XCTE() (in module wfpc2tools.wfpc2cte), 4
compute_YCTE() (in module wfpc2tools.wfpc2cte), 4
cr_reject() (in module wfpc2tools.wfpc2destreak), 8

D
destreak() (wfpc2tools.wfpc2destreak.Wfpc2destreak method), 7

F
fitline() (in module wfpc2tools.wfpc2destreak), 8

H
help() (in module wfpc2tools.wfpc2cte), 4

M
median() (in module wfpc2tools.wfpc2destreak), 9

P
print_pars() (wfpc2tools.wfpc2destreak.Wfpc2destreak method), 7
printMsg() (in module wfpc2tools.wfpc2util), 11

R
run() (in module wfpc2tools.wfpc2cte), 4

S
setBias_thresh() (in module wfpc2tools.wfpc2util), 11
setGroup() (in module wfpc2tools.wfpc2util), 11
setInput_mask() (in module wfpc2tools.wfpc2util), 11
setNiter() (in module wfpc2tools.wfpc2util), 12
setRow_thresh() (in module wfpc2tools.wfpc2util), 12
setVerbosity() (in module wfpc2tools.wfpc2util), 12
update_CTE_keywords() (in module wfpc2tools.wfpc2cte), 4
update_header() (in module wfpc2tools.wfpc2destreak), 9

W
Wfpc2destreak (class in wfpc2tools.wfpc2destreak), 6
wfpc2tools.wfpc2cte (module), 3
wfpc2tools.wfpc2destreak (module), 5
wfpc2tools.wfpc2util (module), 11
write_mask() (in module wfpc2tools.wfpc2destreak), 9
write_to_file() (in module wfpc2tools.wfpc2destreak), 9